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We propose a complex fiber bundle model for the optimization of heterogeneous materials, which consists
of many simple bundles. We also present an exact and compact recursion relation for the failure probability of
a simple fiber bundle model with local load sharing, which is more efficient than the ones reported previously.
Using a “renormalization method” and the recursion relation developed for the simple bundle, we calculate
the failure probabilities of the complex fiber bundle. When the total number of fibers is given, we find that
there exists an optimum way to organize the complex bundle, in which one gets a stronger bundle than in other
ways.[S1063-651X96)13509-1

PACS numbgs): 05.40+j, 62.20.Mk, 02.70.Rw

[. INTRODUCTION array of n individual fibers, whose thresholds are chosen
randomly according to some distribution functip(x), such

For many years, fracture and failure of materials havethatp(x)dx is the probability that the threshold of a fiber is
drawn much attention of physicists. There have been manin [x,x+dx]. The fiber bundle may be called a simple
efforts to analyze the fracture and failure properties of hetbundle in the sense that its elements are merely individual
erogeneous materials with the use of random network modibers. In this paper, we study a complex bundle, which is
els[1-4]. Among the many theoretical models for material organized with many simple bundles in the same way the
failure the fiber bundle model has been studied extensively isimple bundle is organized with fibers. Now the simple
recent year$5—10]. According to the load sharing rules, the bundles can be called sub-bundles, which are regarded as the
fiber bundle models can be divided into two types: the equaglements of the complex bundle. We can then apply the re-
load sharing(ELS) model and the local load sharifgL,S)  cursion relation developed for the simple bundle to the com-
model. In the ELS models, the load is shared equally by alplex bundle through some “renormalization approach.”
surviving elements in the system. This is appropriate foWhen we deal with a simple bundle, the elements of it are
loosely wound yarns. In the LLS models, the load previouslyindividual fibers. At a higher level, when we deal with the
carried by a failed element is shared by the surviving elecomplex bundle, each sub-bundle is now considered as an
ments in the immediate vicinity. This kind of load sharing element. At the two different levels, the form of recursion
occurs in most materials under tensile loading, and is infelations remains the same. Itis in this sense we use the term
cluded in the random spring, electric, dielectric, and super-renormalization.” In the earlier studies on the fiber bundle
conducting network§11—-13. One aspect of the studies on models, a chain-of-fiber bundles model was studied exten-
the fiber bundle model concerns the strength of the bundlesively [18,22—24. In contrast to the chain of bundles, which
The question often asked is, Under a given load,sawhat IS an organization of simple bundles in series, the complex
is the probability that the fiber bundle fails? For the ELSfiber bundle is a parallel organization of simple bundles.
model the failure probabilities can be calculated analyticallyNewmanet al.[25] have proposed a hierarchically organized
[14,15. The LLS model[16,17, however, is much more fiber bundle model, with equal load sharing. Their model has
difficult to treat analytically. In the early studies on the LLS many levels of bundles, while our model in consideration
fiber bundle model, Harlow and Phoer{i8] developed a only has two levels, the simple bundle and the complex
transition matrix method to calculate the failure probability. bundle. It is straightforward to generalize our model to
Lately some recursion relations were develop#8,20. In ~ higher levels.
our previous work, we developed an exact recursion relation
[21] for calculating the failure probability in the LLS model.
An interesting finding was that for a given external laad
the failure probability as a function of the system sizbas For the simple bundle, we could calculate the failure
a well defined minimum at a certain valuefsayn,, (see  probability through the exact recursion relation reported in
Fig. 1). We are motivated to find an optimal way to arrangeour previous papdr21]. The recursion relation turned out to
the fibers such that it gives a stronger bundle than othebe more efficient than some approximate methods. However,
ways. in this paper, we do not intend to use that recursion relation

The fiber bundle we studied before is a one dimensionalor the calculations. Noticing the work by Duxbury and

II. COMPACT RECURSION RELATION
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Leath[26], here we develop another exact recursion relation, (1+i2)o
which will be shown to be more compact and more efficient Wi(0)=1—f p(x)dx. (1)
than the previous one. 0

In this paper when we speak of the load on the system, we
mean the total external force divided by the total number ofWhen a given external load is applied to the fiber bundle,
fibers in the system. The local load sharing rules are definethe probabilityf ,(o) that the fiber bundle fails is the interest
such that a surviving element in the bundémple or com-  of the studies. If all the fibers in the bundle fail, the bundle is
plex) carries the load (%r/2)o, whereo is the load on the said to have failed. If at least one fiber survives, the bundle is
bundle, and is the number of consecutive failed elementssaid to survive. When a load is applied to the bundle, the
immediately adjacent to this surviving element counting onbundle can survive in 2-1 different possible ways, which
both sides. According to the load sharing rules, the probabilare called survival configurations. If we denote a failed fiber
ity w;(o) that a fiber survives, when it hasfailed fibers with a 0, and a survival fiber with a 1, the survival configu-
adjacent to it, is rations of the bundle o fibers can be put in the form
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(0101@ . . . 103),. 2)

The subscriptn outside the parentheses indicates the total
number of fibers in the bundle, while the 1's and 0’s in the
parentheses show the status of corresponding fibers in tfw
bundle. The probability of each survival configuration can b
written out in explicit form. For example, the probability of

the survival configuration (0010010)s

5(00100107: f2W4f2W3f1. (3)

In the above expressiof, meansf, (o), which is the failure
probability of a bundle of two fibers when a loadis ap-
plied. We have suppressed the symbol

Each of the 2—1 survival configurations is independent,

so the survival probability of the bundi (o) is obviously

Sn(a')=2 s( configuration,, . 4)
Then the failure probability of the bundle is just
fa(o)=1—sp(0). ©)

However, the configuration-counting method, E4), is not

applicable for largen, because the number of survival con-

figurations scales with as 2. It is in this situation that the
various recursion relations were introduced.

For all the recursion relations developed previously
[20,21,28, the key point is to classify the survival configu-
rations properly, so that the survival probabilities of the con-
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> s(n,i)=1.
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For smalln, the set probability can be easily calculated.
hen n=1, there are only two configurations, (1and
0)4, which belong to sets(1,0) ands(1,1), respectively. It
is straightforward that

S(1,0)=wo=1— f:p(x)dx @

and

S(L)=f,= f:p(x)dx=1—wo. (10)

For arbitraryn, the set probabilitys(n,i) can be calculated
through the following simple recursion relation:
n—-i—1

s(ni)= > s(n—i—1jw;f;,

Oo<i=n-—1.

11

In deducing the recursion relation, E41), we have defined
5(0,0)=1, i.e.,fo=1. Remembering that(i,i)=f;, we can
obtain the failure probability,, for anyn by using Eqs(5),
(7), and(11).

We note here that in Ref18] Harlow and Phoenix de-
veloped a Markov recursion for some conditional survival

figurations can be summed into groups, then the recursiofroPabilities of the fiber bundle, which is in the form

relation is developed for the group probabilities. The major
difference between the different recursion relations is the
way in which the survival configurations are classified. We

classify these 2—1 survival configurations into different
groups in the following way. Let(n,i) be the set of survival
configurations which have the form
/_/’\ﬂ
(...100...0),,
(6)

where O<i<n-—1. In words, there aré consecutive 0’s at
the right ends of the configurations. So for giverthere are
n groups of survival configurations. Each of the-21 sur-

vival configurations belongs uniquely to one of thgroups.

For example, (0101100)and (1000100) belong to the set
s(7,2); (111}, (001);, and (011} are included in the set
s(3,0). In addition, we can also le(n,n) denote the con-
figuration (00Q - -00),, which is not a survival configura-

QMIQR!=Qhs, (12
whereQ!M is a column vector with 1 components, and
QK is a 2—1 by 2~ 1 matrix. The first component of the
vectorQl¥). | denoted byQl¥(o), is the probability that no
sequence ok or more broken fiber elements will occur any-
where in a bundle ofh fibers under loads. For k=n,
Q!'¥l(¢) is nothing but the survival probability of a bundle of
n under loado, which in this paper is denoted Isy(o). For
k=n, if one writes out Eq.(12) in summation form, the
survival probability of the bundI®!™ (o) can be expressed
as a sum of 2—1 terms, each of which is a product of a
component of the vectdQL”] with the corresponding com-
ponent of the matrixQ!"l. Equation(12) is a Markov recur-
sion in the sense thad ¥, can be calculated fron@¥!.
The recursion relation, Eq11), we present in this paper,
however, is not a Markov recursion, becawg$a,i) cannot
be calculated merely froma(n—1,j)’s; we need to use the

tion but the failure configuration. So the probability of this survival probabilities for all sizes less than

configuration is virtually the failure probabilitf}, . Hereafter

The recursion relation we present in this paper is more

we also uses(n,i) to denote the sum of the probabilities of compact and efficient than the one reported in R&f]. The
the configurations in this set. So the survival probability ofnew recursion relation, Eq11), contains only one expres-

the bundle can be calculated through
n—1

sa(a)=2, s(n,i).

()

Noticing thats(n,n)=f, and f,+s,=1, we also have the
relation

sion, while the previous one contains three expresdises
Eqg. (3.5 in Ref.[21]]. Using this recursion relation to cal-
culate the survival probabilitg,(o), the number of terms to
be added isn?/2+n/2, while for the previous one it is
n?—n+1. In computations, this new one requires only about
50% of the computer memory required by the previous one,
and spends less CPU time than the latter. For example, in the
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computation forf,,(0.14), fromn=1 throughn= 1000, the 1007
CPU expenditurédSun SPARC Station ) for the new re- ] .
cursion relation is about 260 sec, while for the previous one ] (a)
it is about 1800 sec. A subtle difference between the two
recursion relations is that the new one does not involve di- 1\
vision while the previous one did. Indeed, it is easier and

faster and even sometimes more accurate for computers to do

I‘Wm(@

multiplication than to do division. For this reason we might 10- \\
expect that under some circumstances the new recursion re- ] 4
lation be more accurate than the previous one. In most cases, ] L\W

the two recursion relations give exactly the same results for
the failure probabilities.

We now can use the recursion relati@iil) to calculate
the survival probabilities and then the failure probabilities
f,(o)’s of the LLS fiber bundles. For some giveris, the
plots of f ,(¢r) versusn are shown in Fig. 1. We see that the I B VU P M
failure probabilityf,(o), as a function oh, has a well de-

fined minimum at a certain value of, say n,,. It is the g
existence of this minimum that motivated us to consider con- 90+
structing a complex fiber bundle and optimizing it. We also ] P
see from this figure that the position of, is o dependent. 801 (b)
Generally speakingy,,, becomes larger as is decreased, as 701
shown in Fig. 2. A similar result about the behaviors of —~ ]
f,(o) andn,, has been obtained by Leath and Duxb[29], 5 601 ‘
but their results were based on approximate calculations. C’é 50; ‘
1
lIl. RENORMALIZATION APPROACH 403 \
TO THE COMPLEX BUNDLE 30_' \
Now we turn to the complex bundle and put this question: 201 \
When a loado is applied to a complex bundle afxN 1\
fibers, what is the probabilityF{"(o) that the complex 103 \\\_
bundle fails? Heren is the number of fibers in each sub- I e
bundle, andN is the number of sub-bundles in the complex 0.0 0.5 1.0 1.5 2.0
bundle. So the total number of fibers in the systenmi& g

Remembering that the elements of the complex bundle are o _ _ 3
Sub_bundIeS, we can now treat the Complex model as a FIG. 2. The miniman, , at which the failure pl’ObabI|Ity as-
simple one. sumes minimum value, depends on the loadapplied to the
The complex bundle also had'2 1 surviving configura-  Pundle. Ass—0, ny, may go to infinity, as shown in this figuréa)
tions that can also be written in the form (1000010), For the uniform threshold distributiortb) For the Weibull thresh-
. o S S _
Letting W™ be the probability that a sub-bundle wffibers old distributionP(o) =1~ exp[ o™ with m=1.

survives when it has broken sub-bundles adjacent to it ) .
(counting on both sid¢swe have the complex bundle can be calculated by using the recursion

relation forS™(N, i), which is in the same form as E¢{L1).

W (g)=1-f,

1+ IE) a’) , (13
IV. OPTIMIZATION OF THE COMPLEX BUNDLE

wheref (o) is the probability that a sub-bundle fails when  Suppose we have a total numb&r of fibers. The

a loadoy is applied on the sub-bundle, which can be calcu-integer 3 can be factorized asX>=1Xx3=n;xN;,

lated through Eq(5), Eq. (7), and Eq.(11). The classifica- =n,xN,=-..=n;XN;---. We can organize th& fibers

tion of the surviving configurations of the complex bundle isas a simple fiber bundle or a complex fiber bundle which

the same as for a simple bundle except that the elements agensists olN; sub-bundles of; fibers. The question is, What

not fibers but sub-bundleS™(N,i) is the set of surviving is the best way to organize theEefibers such that it gives a

configurations of the complex bundle that have the form  stronger bundle than any other ways? In the case that the

i 3, fibers form a simple fiber bundle, when a loads applied

(...100...0)y. to the system, the failure probability is just(c). For a

complex fiber bundle of the form; X N;, the failure prob-

Then the recursion relation f&™(N,i) is obtained by re- ability is Fﬁ:i)(ff)- Our task is to find if there is an optimal

placing s(n,i), f,, and w; in Eq. (11) with S™(N,i), way to construct the complex bundle, i.e., to find
F({, andW,, respectively. Then the failure probability of N=n,x N, such that
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Fo)<p(M) i 4g (14)  comesn,=5. So we should turn to some average quantities
N N. ! . . . .
° i in order to find a unique,. The average strength of a com-

The subscripb means optimal value plex fiber bundle can be calculated through

In the following discussions, we take the uniform thresh-
old distributionp(o)=1, o €[0,1] for examples. In Fig. 3, o(n, ’Ni):f crdFL”i)(a). (15)
we present some of the results of the failure probabilities. i

3 i (n;) 3
The figure is a plot of " versus the total number of fibers |, rjg 4 we show some results of the average strength of

.. Itis a natural outcome that each of the curves for differenthe complex bundle. The lines in this figure are calculated
n has a point of intersection with the curve fo=1, i.e., the  from Eq.(15), while the various symbols], A, andO show
simple bundle, because wheé¥y=1 the complex bundle the results from actual simulations of the complex bundle,
n; X N; is nothing but a simple bundle af; fibers. It is ob-  which are in good agreement with the lines. In this figure, the
vious that the lowest curve gives the optimal valog.
When the loadr=0.1, we find that all the curves are above
the curve forn=6. Son,=6 is the optimal value oh for
o=0.1. We find thatn, is o dependent, in other words,
different o values require different optimaid,. In Table I,
we list the failure probability of the complex bundle with a
total number of fibers, =2520 but with differentn and N.
We see that whenr=0.12, the optimal value oh is
n,=6; wheno=0.16, however, the optimal value af be-

g (n,N)

TABLE I. For 3, =2520, the failure probabilities of the complex
bundlesF{’(c) for the given loadr=0.12, ando=0.16, and the
average strengtbr(n,N). The numbers marked with are optimal

0.16

: 0.14
value in each column. 3
(n) (n) — 0.12 _
FN7(0.12) F\7(0.16) o(n,N) 3
n=3 0.003170420 0.307494 0.167071 0‘“’130 ' S
4 0.001504400 0.242138 0.170267 -
5 0.001066480 0.233358 0.170191 “
6 0.000968673 0.250782 0.168612 FIG. 4. The average strength of the complex bundles calculated
7 0.001049730 0.299856 0.166241 from Eq. (15). The symbols], A, and O represent the results
8 0.001181350 0.359475 0.163857 obtained from actual simulations of 1000 samples. The dashed line
9 0.001430210 0.426635 0.161362 in the figure is the average strength for a simple bundle. We see that

the complex bundles are all stronger than a simple one.
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TABLE Il. The average strength of the complex bundle

o(n,N).

2 =300

600

1200

1800

2400

3 0.204041
0.205939

0.189793
0.192181
0.191127

0.177881
0.180687
0.180234

0.171763
0.174794
0.174566

0.167731
0.170905
0.170808

3319

40.0

%=1000

0.204086
0.201006

o 01 b~

0.188472 0.178047 0.172709 0.169189

average strength for the simple bundfe<(1) is also shown,
from which we see that all complex bundles are stronger
than a simple bundle of the same total number of fi&rs
We try to find an, such that for a giverx,

10.0 4

O-(novNo)ZO-(ni ,Ni),

TTTT

] /
(16) Y Y /- CAM A :
0.95

G0 0os 010 015

The results about the average strength of the complex bundle P

are listed in Table II, which suggest that 4 is the optimal
value for the number of fibers in a sub-bundle when a com- FIG. 5. The failure probability densit@f\,”ii)(a) for some com-

plex bundle is to be constructed. The result thgt 4 is true  plex bundles with total number of fib&=1000. The most prob-
up to the total number of fibers = 3000. able loado, is dependent on the number of fibersin a sub-
We can also consider the failure probability density of thebundle. Whem=4, ¢, assumes its optimal value.

complex bundleD{’(s), which is defined as

i #0.

o

bundles, which have the same total number of fibers
3,=1000, but with differenin andN. The positions ofr,;s
vary from one complex bundle to another. We find that the
largesto,, is given by the curve fon=4, indicating that
As a function ofe, the failure probability density has a well n=4 is the optimal value,. The result for the optimah
defined maximum, which defines the most probable failureobtained from the failure probability density is consistent
load o,,, where the failure probability density assumes anwith the result based on the average strength.

extreme value. We have found for the simple bundle in our
previous work that as the total number of fibergoes to
infinity, the most probable load,, actually coincides with
the average strength of the bun@i®]. This result still holds This work is supported by the National Nature Science
for the complex bundle. Now we can optimize the complexFoundation, the National Basic Research Project “Nonlinear
bundle by the determination aof, through the position of Science,” and the State Educational Commission through
on. In Fig. 5, we present the results for some complexthe Foundation of Doctoral Training.

IF\ (o)

Jo

D(0) = 17)

ACKNOWLEDGMENTS

[1] Statistical Models for the Fracture of Disordered Meded-  [14] H.E. Daniels, Proc. R. Soc. London Ser.183 405(1945.

ited by H.J. Herrmann and S. RouXorth-Holland, Amster-  [15] W. Lee, Phys. Rev. B0, 3797 (1994).
dam, 1990. [16] R.L. Smith, Proc. R. Soc. London Ser.3Y2 539(1980.
[2] P.M. Duxbury, P.D. Beale, and P.L. Leath, Phys. Rev. Lett.[17] A. Hansen and P.C. Hemmer, Phys. Lett184, 394 (1994.
57, 1052(1986. [18] D.G. Harlow and S.L. Phoenix, Int. J. Fracturé 601 (1981).
[3] P.D. Beale and D.J. Srolovitz, Phys. Rev3B 5500(1988. [19] C.C. Kuo and S.L. Phoenix, J. Appl. Pr@d, 137 (1987).
[4] P.L. Leath and W. Tang, Phys. Rev.3, 6485(1989. [20] P.L. Leath and P.M. Duxbury, Phys. Rev4B, 14 905(1994).
[5] D. Sornette and S. Redner, J. Phys22 L619 (1989. [21] S.D. Zhang and E.J. Ding, Phys. Rev5B, 646 (1996.
[6] D. Sornette, J. Phys. &2, 1.243 (1989. [22] D.G. Harlow and S.L. Phoenix, J. Composite Matk2, 195

[7] D.G. Harlow and S.L. Phoenix, J. Mech. Phys. So&s 173 (1978
(1992. . [23] D.G. Harlow and S.L. Phoenix, J. Composite MatE2, 314
[8] Y.N. Lu and E.J. Ding, J. Phys. &5, L241 (1992. (1978

[9] P.C. Hemmer and A. Hansen, J. Appl. Me&8, 909 (1992.
[10] S.D. Zhang and E.J. Ding, Phys. Lett.183 425(1994.
[11] W.A. Curtin and H. Scher, J. Mater. Re%.535(1990.

[12] M. Sahimi and J.D. Goddard, Phys. Rev3B, 7848(1986.
[13] H.J. Herrmann, A. Hansen, and S. Roux, Phys. Re898537
(1989.

[24] D.G. Harlow and S.L. Phoenix, Int. J. Fracturg 347(1981).

[25] W.l. Newman, A.M. Gabrielov, T.A. Durand, S.L. Phoenix,
and D.L. Turcotte, Physica 37, 200(1994.

[26] P.M. Duxbury and P.L. Leath, Phys. Rev. Le#t2, 2805
(1994.



