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We propose a complex fiber bundle model for the optimization of heterogeneous materials, which consists
of many simple bundles. We also present an exact and compact recursion relation for the failure probability of
a simple fiber bundle model with local load sharing, which is more efficient than the ones reported previously.
Using a ‘‘renormalization method’’ and the recursion relation developed for the simple bundle, we calculate
the failure probabilities of the complex fiber bundle. When the total number of fibers is given, we find that
there exists an optimum way to organize the complex bundle, in which one gets a stronger bundle than in other
ways.@S1063-651X~96!13509-1#

PACS number~s!: 05.40.1j, 62.20.Mk, 02.70.Rw

I. INTRODUCTION

For many years, fracture and failure of materials have
drawn much attention of physicists. There have been many
efforts to analyze the fracture and failure properties of het-
erogeneous materials with the use of random network mod-
els @1–4#. Among the many theoretical models for material
failure the fiber bundle model has been studied extensively in
recent years@5–10#. According to the load sharing rules, the
fiber bundle models can be divided into two types: the equal
load sharing~ELS! model and the local load sharing~LLS!
model. In the ELS models, the load is shared equally by all
surviving elements in the system. This is appropriate for
loosely wound yarns. In the LLS models, the load previously
carried by a failed element is shared by the surviving ele-
ments in the immediate vicinity. This kind of load sharing
occurs in most materials under tensile loading, and is in-
cluded in the random spring, electric, dielectric, and super-
conducting networks@11–13#. One aspect of the studies on
the fiber bundle model concerns the strength of the bundle.
The question often asked is, Under a given load, says, what
is the probability that the fiber bundle fails? For the ELS
model the failure probabilities can be calculated analytically
@14,15#. The LLS model@16,17#, however, is much more
difficult to treat analytically. In the early studies on the LLS
fiber bundle model, Harlow and Phoenix@18# developed a
transition matrix method to calculate the failure probability.
Lately some recursion relations were developed@19,20#. In
our previous work, we developed an exact recursion relation
@21# for calculating the failure probability in the LLS model.
An interesting finding was that for a given external loads,
the failure probability as a function of the system sizen has
a well defined minimum at a certain value ofn, saynm ~see
Fig. 1!. We are motivated to find an optimal way to arrange
the fibers such that it gives a stronger bundle than other
ways.

The fiber bundle we studied before is a one dimensional

array of n individual fibers, whose thresholds are chosen
randomly according to some distribution functionp(x), such
that p(x)dx is the probability that the threshold of a fiber is
in @x,x1dx#. The fiber bundle may be called a simple
bundle in the sense that its elements are merely individual
fibers. In this paper, we study a complex bundle, which is
organized with many simple bundles in the same way the
simple bundle is organized with fibers. Now the simple
bundles can be called sub-bundles, which are regarded as the
elements of the complex bundle. We can then apply the re-
cursion relation developed for the simple bundle to the com-
plex bundle through some ‘‘renormalization approach.’’
When we deal with a simple bundle, the elements of it are
individual fibers. At a higher level, when we deal with the
complex bundle, each sub-bundle is now considered as an
element. At the two different levels, the form of recursion
relations remains the same. It is in this sense we use the term
‘‘renormalization.’’ In the earlier studies on the fiber bundle
models, a chain-of-fiber bundles model was studied exten-
sively @18,22–24#. In contrast to the chain of bundles, which
is an organization of simple bundles in series, the complex
fiber bundle is a parallel organization of simple bundles.
Newmanet al. @25# have proposed a hierarchically organized
fiber bundle model, with equal load sharing. Their model has
many levels of bundles, while our model in consideration
only has two levels, the simple bundle and the complex
bundle. It is straightforward to generalize our model to
higher levels.

II. COMPACT RECURSION RELATION

For the simple bundle, we could calculate the failure
probability through the exact recursion relation reported in
our previous paper@21#. The recursion relation turned out to
be more efficient than some approximate methods. However,
in this paper, we do not intend to use that recursion relation
for the calculations. Noticing the work by Duxbury and
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Leath@26#, here we develop another exact recursion relation,
which will be shown to be more compact and more efficient
than the previous one.

In this paper when we speak of the load on the system, we
mean the total external force divided by the total number of
fibers in the system. The local load sharing rules are defined
such that a surviving element in the bundle~simple or com-
plex! carries the load (11r /2)s, wheres is the load on the
bundle, andr is the number of consecutive failed elements
immediately adjacent to this surviving element counting on
both sides. According to the load sharing rules, the probabil-
ity wi(s) that a fiber survives, when it hasi failed fibers
adjacent to it, is

wi~s!512E
0

~11 i /2!s

p~x!dx. ~1!

When a given external loads is applied to the fiber bundle,
the probabilityf n(s) that the fiber bundle fails is the interest
of the studies. If all the fibers in the bundle fail, the bundle is
said to have failed. If at least one fiber survives, the bundle is
said to survive. When a loads is applied to the bundle, the
bundle can survive in 2n21 different possible ways, which
are called survival configurations. If we denote a failed fiber
with a 0, and a survival fiber with a 1, the survival configu-
rations of the bundle ofn fibers can be put in the form

FIG. 1. The failure probability of a simple
bundle, as a function of the number of fibersn,
has a well defined minimum atnm . As examples,
~a! shows the result for the uniform threshold
distributionp(s)51, wheresP@0,1#; ~b! shows
the result for the Weibull threshold distri-
bution p(s) such thatP(s)5*0

s p(x)dx51
2 exp[2sm] with m51, where s P @0,`).
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~010100 . . . 101!n . ~2!

The subscriptn outside the parentheses indicates the total
number of fibers in the bundle, while the 1’s and 0’s in the
parentheses show the status of corresponding fibers in the
bundle. The probability of each survival configuration can be
written out in explicit form. For example, the probability of
the survival configuration (0010010)7 is

s~0010010!75 f 2w4f 2w3f 1 . ~3!

In the above expression,f 2 meansf 2(s), which is the failure
probability of a bundle of two fibers when a loads is ap-
plied. We have suppressed the symbols.

Each of the 2n21 survival configurations is independent,
so the survival probability of the bundlesn(s) is obviously

sn~s!5( s~ configuration!n . ~4!

Then the failure probability of the bundle is just

f n~s!512sn~s!. ~5!

However, the configuration-counting method, Eq.~4!, is not
applicable for largen, because the number of survival con-
figurations scales withn as 2n. It is in this situation that the
various recursion relations were introduced.

For all the recursion relations developed previously
@20,21,26#, the key point is to classify the survival configu-
rations properly, so that the survival probabilities of the con-
figurations can be summed into groups, then the recursion
relation is developed for the group probabilities. The major
difference between the different recursion relations is the
way in which the survival configurations are classified. We
classify these 2n21 survival configurations into different
groups in the following way. Lets(n,i ) be the set of survival
configurations which have the form

~6!

where 0< i<n21. In words, there arei consecutive 0’s at
the right ends of the configurations. So for givenn, there are
n groups of survival configurations. Each of the 2n21 sur-
vival configurations belongs uniquely to one of then groups.
For example, (0101100)7 and (1000100)7 belong to the set
s(7,2); (111)3, (001)3, and (011)3 are included in the set
s(3,0). In addition, we can also lets(n,n) denote the con-
figuration (000•••00)n , which is not a survival configura-
tion but the failure configuration. So the probability of this
configuration is virtually the failure probabilityf n . Hereafter
we also uses(n,i ) to denote the sum of the probabilities of
the configurations in this set. So the survival probability of
the bundle can be calculated through

sn~s!5 (
i50

n21

s~n,i !. ~7!

Noticing thats(n,n)5 f n and f n1sn51, we also have the
relation

(
i50

n

s~n,i !51. ~8!

For smalln, the set probability can be easily calculated.
When n51, there are only two configurations, (1)1 and
(0)1, which belong to setss(1,0) ands(1,1), respectively. It
is straightforward that

s~1,0!5w0512E
0

s

p~x!dx ~9!

and

s~1,1!5 f 15E
0

s

p~x!dx512w0 . ~10!

For arbitraryn, the set probabilitys(n,i ) can be calculated
through the following simple recursion relation:

s~n,i !5 (
j50

n2 i21

s~n2 i21,j !wj1 i f i , 0< i<n21.

~11!

In deducing the recursion relation, Eq.~11!, we have defined
s(0,0)51, i.e., f 051. Remembering thats( i ,i )5 f i , we can
obtain the failure probabilityf n for anyn by using Eqs.~5!,
~7!, and~11!.

We note here that in Ref.@18# Harlow and Phoenix de-
veloped a Markov recursion for some conditional survival
probabilities of the fiber bundle, which is in the form

Q@k#Qn
@k#5Qn11

@k# , ~12!

whereQn
@k# is a column vector with 2k21 components, and

Q@k# is a 2k21 by 2k21 matrix. The first component of the
vectorQn11

@k# , denoted byQn
@k#(s), is the probability that no

sequence ofk or more broken fiber elements will occur any-
where in a bundle ofn fibers under loads. For k5n,
Qn

@k#(s) is nothing but the survival probability of a bundle of
n under loads, which in this paper is denoted bysn(s). For
k5n, if one writes out Eq.~12! in summation form, the
survival probability of the bundleQn

@n#(s) can be expressed
as a sum of 2n21 terms, each of which is a product of a
component of the vectorQn

@n# with the corresponding com-
ponent of the matrixQ@n#. Equation~12! is a Markov recur-
sion in the sense thatQn11

@k# can be calculated fromQn
@k# .

The recursion relation, Eq.~11!, we present in this paper,
however, is not a Markov recursion, becauses(n,i ) cannot
be calculated merely froms(n21,j )’s; we need to use the
survival probabilities for all sizes less thann.

The recursion relation we present in this paper is more
compact and efficient than the one reported in Ref.@21#. The
new recursion relation, Eq.~11!, contains only one expres-
sion, while the previous one contains three expressions@see
Eq. ~3.5! in Ref. @21##. Using this recursion relation to cal-
culate the survival probabilitysn(s), the number of terms to
be added isn2/21n/2, while for the previous one it is
n22n11. In computations, this new one requires only about
50% of the computer memory required by the previous one,
and spends less CPU time than the latter. For example, in the
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computation forf n(0.14), fromn51 throughn51000, the
CPU expenditure~Sun SPARC Station 11! for the new re-
cursion relation is about 260 sec, while for the previous one
it is about 1800 sec. A subtle difference between the two
recursion relations is that the new one does not involve di-
vision while the previous one did. Indeed, it is easier and
faster and even sometimes more accurate for computers to do
multiplication than to do division. For this reason we might
expect that under some circumstances the new recursion re-
lation be more accurate than the previous one. In most cases,
the two recursion relations give exactly the same results for
the failure probabilities.

We now can use the recursion relation~11! to calculate
the survival probabilities and then the failure probabilities
f n(s)’s of the LLS fiber bundles. For some givens ’s, the
plots of f n(s) versusn are shown in Fig. 1. We see that the
failure probability f n(s), as a function ofn, has a well de-
fined minimum at a certain value ofn, say nm . It is the
existence of this minimum that motivated us to consider con-
structing a complex fiber bundle and optimizing it. We also
see from this figure that the position ofnm is s dependent.
Generally speaking,nm becomes larger ass is decreased, as
shown in Fig. 2. A similar result about the behaviors of
f n(s) andnm has been obtained by Leath and Duxbury@20#,
but their results were based on approximate calculations.

III. RENORMALIZATION APPROACH
TO THE COMPLEX BUNDLE

Now we turn to the complex bundle and put this question:
When a loads is applied to a complex bundle ofn3N
fibers, what is the probabilityFN

(n)(s) that the complex
bundle fails? Heren is the number of fibers in each sub-
bundle, andN is the number of sub-bundles in the complex
bundle. So the total number of fibers in the system isnN.
Remembering that the elements of the complex bundle are
sub-bundles, we can now treat the complex model as a
simple one.

The complex bundle also has 2N21 surviving configura-
tions that can also be written in the form (1000•••010)N .
LettingWi

(n) be the probability that a sub-bundle ofn fibers
survives when it hasi broken sub-bundles adjacent to it
~counting on both sides!, we have

Wi
~n!~s!512 f nS S 11

i

2Ds D , ~13!

where f n(ss) is the probability that a sub-bundle fails when
a loadss is applied on the sub-bundle, which can be calcu-
lated through Eq.~5!, Eq. ~7!, and Eq.~11!. The classifica-
tion of the surviving configurations of the complex bundle is
the same as for a simple bundle except that the elements are
not fibers but sub-bundles.S(n)(N,i ) is the set of surviving
configurations of the complex bundle that have the form

Then the recursion relation forS(n)(N,i ) is obtained by re-
placing s(n,i ), f n , and wi in Eq. ~11! with S(n)(N,i ),
FN
(n) , andWi , respectively. Then the failure probability of

the complex bundle can be calculated by using the recursion
relation forS(n)(N,i ), which is in the same form as Eq.~11!.

IV. OPTIMIZATION OF THE COMPLEX BUNDLE

Suppose we have a total numberS of fibers. The
integer S can be factorized asS513S5n13N1
5n23N25•••5ni3Ni•••. We can organize theS fibers
as a simple fiber bundle or a complex fiber bundle which
consists ofNi sub-bundles ofni fibers. The question is, What
is the best way to organize theseS fibers such that it gives a
stronger bundle than any other ways? In the case that the
S fibers form a simple fiber bundle, when a loads is applied
to the system, the failure probability is justfS(s). For a
complex fiber bundle of the formni3Ni , the failure prob-
ability is FNi

(ni )(s). Our task is to find if there is an optimal

way to construct the complex bundle, i.e., to find
N5no3No such that

FIG. 2. The minimanm , at which the failure probability as-
sumes minimum value, depends on the loads applied to the
bundle. Ass→0, nm may go to infinity, as shown in this figure.~a!
For the uniform threshold distribution.~b! For the Weibull thresh-
old distributionP(s)512 exp @2sm# with m51.
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FNo

~no!
<FNi

~ni ! , iÞo. ~14!

The subscripto means optimal value.
In the following discussions, we take the uniform thresh-

old distributionp(s)51, sP@0,1# for examples. In Fig. 3,
we present some of the results of the failure probabilities.
The figure is a plot ofFNi

(ni ) versus the total number of fibers

S. It is a natural outcome that each of the curves for different
n has a point of intersection with the curve forn51, i.e., the
simple bundle, because whenNi51 the complex bundle
ni3Ni is nothing but a simple bundle ofni fibers. It is ob-
vious that the lowest curve gives the optimal valueno .
When the loads50.1, we find that all the curves are above
the curve forn56. Sono56 is the optimal value ofn for
s50.1. We find thatno is s dependent, in other words,
different s values require different optimalno . In Table I,
we list the failure probability of the complex bundle with a
total number of fibersS52520 but with differentn andN.
We see that whens50.12, the optimal value ofn is
no56; whens50.16, however, the optimal value ofn be-

comesno55. So we should turn to some average quantities
in order to find a uniqueno . The average strength of a com-
plex fiber bundle can be calculated through

s̄~ni ,Ni !5E sdFNi
~ni !~s!. ~15!

In Fig. 4 we show some results of the average strength of
the complex bundle. The lines in this figure are calculated
from Eq.~15!, while the various symbolsh, n, ands show
the results from actual simulations of the complex bundle,
which are in good agreement with the lines. In this figure, the

FIG. 4. The average strength of the complex bundles calculated
from Eq. ~15!. The symbolsh, n, ands represent the results
obtained from actual simulations of 1000 samples. The dashed line
in the figure is the average strength for a simple bundle. We see that
the complex bundles are all stronger than a simple one.

TABLE I. For S52520, the failure probabilities of the complex
bundlesFN

(n)(s) for the given loads50.12, ands50.16, and the
average strengths̄(n,N). The numbers marked with! are optimal
value in each column.

FN
(n)(0.12) FN

(n)(0.16) s̄(n,N)

n53 0.003170420 0.307494 0.167071
4 0.001504400 0.242138 0.170267!

5 0.001066480 0.233358! 0.170191
6 0.000968673! 0.250782 0.168612
7 0.001049730 0.299856 0.166241
8 0.001181350 0.359475 0.163857
9 0.001430210 0.426635 0.161362

FIG. 3. The failure probabilities of the com-
plex bundles for differentn. When the loads is
given, the failure probability of the complex
bundle, as a function of the total number of fibers
S, has a similar behavior as that of a simple
bundle. For a givenS, differentn gives different
failure probabilities, among which the lowest one
determinesno . Whens50.1, we getno56. In
this figure and the following figures, the threshold
distribution is chosen to be the uniform one
p(s)51, sP@0,1#.
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average strength for the simple bundle (n51) is also shown,
from which we see that all complex bundles are stronger
than a simple bundle of the same total number of fibersS.
We try to find ano such that for a givenS

s̄~no ,No!>s̄~ni ,Ni !, iÞo. ~16!

The results about the average strength of the complex bundle
are listed in Table II, which suggest thatn54 is the optimal
value for the number of fibers in a sub-bundle when a com-
plex bundle is to be constructed. The result thatno54 is true
up to the total number of fibersS53000.

We can also consider the failure probability density of the
complex bundleDN

(n)(s), which is defined as

DN
~n!~s!5

]FN
~n!~s!

]s
. ~17!

As a function ofs, the failure probability density has a well
defined maximum, which defines the most probable failure
load sm , where the failure probability density assumes an
extreme value. We have found for the simple bundle in our
previous work that as the total number of fibersn goes to
infinity, the most probable loadsm actually coincides with
the average strength of the bundle@21#. This result still holds
for the complex bundle. Now we can optimize the complex
bundle by the determination ofno through the position of
sm . In Fig. 5, we present the results for some complex

bundles, which have the same total number of fibers
S51000, but with differentn andN. The positions ofsms
vary from one complex bundle to another. We find that the
largestsm is given by the curve forn54, indicating that
n54 is the optimal valueno . The result for the optimaln
obtained from the failure probability density is consistent
with the result based on the average strength.
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TABLE II. The average strength of the complex bundle
s̄(n,N).

S5300 600 1200 1800 2400

n53 0.204041 0.189793 0.177881 0.171763 0.167731
4 0.205939 0.192181 0.180687 0.174794 0.170905
5 0.204086 0.191127 0.180234 0.174566 0.170808
6 0.201006 0.188472 0.178047 0.172709 0.169189

FIG. 5. The failure probability densityDNi

(ni )(s) for some com-

plex bundles with total number of fiberS51000. The most prob-
able loadsm is dependent on the number of fibersn in a sub-
bundle. Whenn54, sm assumes its optimal value.
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